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INSTABILITIES AND PATTERN FORMATION IN
SIMPLE ECOSYSTEM MODELS

M. Baurmann, T. Gross & U. Feudel

Introduction

Models of chemical and biological processes in the pelagic as
well as in the benthic part of the Wadden Sea are very com-
plex and highly nonlinear. As known for a long time nonlineari-
ties can give rise to sudden changes in the behaviour of a
system (GUCKENHEIMER & HOLMES, 2002; OTT, 1997). Such
changes are caused by instabilities which can occur if en-
vironmental parameters cross certain threshold values (bifur-
cations). From an ecological point of view such instabilities
may endanger the ecosystem since the new state of the eco-
system after the bifurcation can be characterised by different
properties, i. e. a different composition of the species com-
munity. Moreover, nonlinear systems can exhibit different sta-
tes for a given set of parameters. This phenomenon is called
multistability. If several different states coexist then it crucially
depends on the initial conditions which of these states is
finally realised.

The aim of our studies is to analyse the stability properties
of simplified models for particular processes in the pelagial
and in benthos. Our main goal is twofold: On the one hand we
try to identify threshold values for the parameters which
correspond to instabilities leading to a new kind of system
behaviour. On the other hand our studies shall contribute to
the understanding of the underlying mechanisms of possible
instabilities in ecosystems. In particular we study models for
food chains in the pelagic system and a minimal model for the
interaction of nutrient and bacteria in the sediment. The first
model class in the pelagial consists of ordinary differential
equations, that means we assume a well mixed system.
Therefore, the transitions from one behaviour to another one
are always assumed to be homogeneous in space. In the
sediment we have to deal with partial differential equations,
thus the investigation is focussed on the interaction of
biological growth processes and physical transport processes.
In this part of the work we are mainly interested in the
formation of spatially inhomogeneous distributions of nutrients
and microorganisms depending on depth in the sediment.
Before we present the results of our analysis of models
describing key processes in the pelagic and in the benthic
system, we give a short survey of the transitions which may
occur in ecological systems. Furthermore, we introduce some
of the methods we have developed to study transition
phenomena in different systems.

Qualitative analysis of nonlinear dynamical systems

The time evolution of natural systems is characterized by a
large variety of different long-term behaviours. In general the
dynamics can be stationary, periodic, quasiperiodic or chaotic.
If environmental parameters (such as nutrient input, tempera-
ture) are varied, sudden discontinuous transitions in the long-
term behaviour can occur. These transitions, which are called
bifurcations, can happen when a system’s parameter crosses
a certain threshold value. Bifurcations are related to an insta-
bility of a certain long-term behaviour and leads to another
one. Depending on the nature of the transitions one can dis-
tinguish between different types of  bifurcations. Our investi-
gation of different simple models describing key processes in
the pelagic as well as in the benthic system reveals only a few
bifurcations. Therefore, we discuss only those bifurcation
situations needed to understand the dynamics of the models
considered here.

In our models we are only interested in regular behaviour,
i. e. stationary states and periodic motions and their cor-

responding bifurcations. This means that we consider equili-
brium states for food chains or periodic changes in the abun-
dances of chemical substances and organisms. Equilibrium
states are in general computed by setting the derivatives in
the differential equations to zero and solving a nonlinear
equation system. For periodic motions one has to use a
specific technique, the Poincaré map, for computation. To find
out threshold phenomena for a system one has to look at the
stability of the equilibrium state or periodic solution with
respect to small perturbations. If all perturbations die out after
some time, the state of the system is stable and called
attractor. If there is at least one perturbation which leads to
another state, this state is unstable and called repellor or
saddle. Mathematically this can be checked by computing the
eigenvalues of the corresponding Jacobian matrix. The signs
of the eigenvalues determine the stability properties. Since
the eigenvalues smoothly depend on the parameters of the
system, the variation of the parameters can lead to changes
in the signs of the eigenvalues. These changes indicate the
bifurcations we are looking for.

Let us discuss the relevant bifurcation situations for our
food chain models in detail. First of all there can be a tran-
sition from one stationary state to another one. Such a situa-
tion can occur if a new steady state (or more precisely two
steady states, one stable and one unstable) arises. This hap-
pens in a turning point and corresponds to a crossing of the
imaginary axis for one real eigenvalue. In biological terms this
could mean, that before the bifurcation there is only one
stable state, where the organisms are extinct, after the
bifurcation there exists a stable state in which all population
densities have a certain nonzero value.

Another situation is the exchange of stability of two
different steady states corresponding to two different
abundances of species. This could be a transition from one
composition of an ecosystem to another one. Mathematically
this again corresponds to a change in sign for one real
eigenvalue and is called transcritical bifurcation.

The Hopf bifurcation of a stable steady state is reflected
by a transition between stationary and periodic behaviour in
the long-term limit. In this situation a pair of complex
conjugate eigenvalues of the Jacobian crosses the imaginary
axis. If the system was in a stable steady state before the
bifurcation, the steady state loses it's stability at the
bifurcation point. As a result a stable or unstable limit cycle
emerges or vanishes in the Hopf bifurcation. Biologically
speaking this would correspond to a transition from stationary
abundances to periodic ones.

In the minimal sediment model which will be discussed in
detail below we find the bifurcations mentioned above in the
case when we neglect the transport through the sediment and
concentrate on the local dynamics between nutrients and
microorganisms. Without transport we find a homogeneous
distribution of nutrients and microorganisms in space. To
study pattern formation processes it is common to first look for
the transition from homogeneous distributions to inhomo-
geneous ones. In spatially extended systems there are seve-
ral possibilities of how patterns can arise. In our minimal
sediment model we focus on the interplay of nonlinear
reactions (growth processes of the microorganisms) and
diffusion. We can show that inhomogeneous distributions can
emerge due to the diffusion instability. There are two main
conditions which have to be fulfilled for the instability to occur:
Firstly, the growth of microorganisms should have an
autocatalytic character and, secondly, nutrients and micro-
organisms should have very different diffusion coefficients. In
such a situation inhomogeneous distributions of nutrients and
microorganisms can occur without any external forcing.

Analytical search for bifurcations

To locate the bifurcations of a given system in parameter
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space is one of the main tasks of qualitative analysis.
Whereas several software packages for convenient
computation of bifurcations exist these are only capable of
calculating bifurcations as a function of up to two parameters.
However, we are interested in the whole parameter space.
Therefore, we have implemented an analytical approach
yielding the bifurcation as a function of all system parameters.
Direct analytical computation of the eigenvalues is only
possible for small systems with a number of variables, say i.
e. interacting species, up to N=4. However, the knowledge of
all eigenvalues is not always necessary for bifurcation
detection, thus we developed a method based on the
determinant of the Jacobian. The determinant of the Jacobian
can act as a test function for some of the bifurcations
mentioned above. Checking for a vanishing determinant is in
general much easier than the factorisation of the Jacobian
characteristic polynomial and is possible for systems of any
size. The method we use is based on resultants
(GUCKENHEIMER et al., 1997). The basic idea of this method is
that the symmetry of the eigenvalues may be used to split the
characteristic polynomial of the Jacobian matrix into two
coupled polynomials. The method we developed to study food
chains and other ecological models is not only applicable to
Hopf bifurcation points, but it is much more general and may
also be used to compute other interesting bifurcation situa-
tions, like real Hopf, Takens-Bogdanov, Gavrilov-Gucken-
heimer and double Hopf bifurcations (GROSS & FEUDEL, 2003).

On the impact of interaction functions on food
chain stability (with W. Ebenhöh)

Since the pioneering work of LOTKA (1925) and VOLTERRA

(1926) many models of ecological food chains have been
proposed (see DEANGELIS, 1992). In a constant environment
most model systems approach a steady state in which the
species coexist in equilibrium. But when environmental
parameters are varied, bifurcations like the ones explained
above can be expected to occur in almost all food chain
models (EDWARDS & BRINDLEY, 1996; GRAGNANI et al., 1998;
BUSENBERG et al., 1990; BOER et al., 1998).

A central assumption of ecosystem modelling is that the
interaction of species or functional groups can be adequately
described by simple mathematical equations. For instance, in
a food chain model one will generally assume the rate of
predation to be some simple function (e. g. Lotka-Volterra,
Holling, Ivlev) of the densities of prey and predator. However,
in nature the interaction of species is more complex. Because
of adaptation the interaction functions will not only depend on
the current state, but also on the history of the system. Even if
adaptation processes can be ignored we cannot expect to find
a single interaction which will obey any mathematical function
exactly. It is therefore commonly assumed that the behaviour
of the system does not depend strongly on the exact
functional form of the interaction. If this is true minor
inaccuracies in the interaction functions will not alter the
model dynamics qualitatively. Here, we present a simple, but
very general food chain model. We investigate the dynamics
of this model without assuming any specific functional form of
predator-prey interaction. In this way the impact of different
forms of interaction on the dynamics can be seen most
clearly.

A general food chain model

To study the stability properties of food chains as important
parts of ecosystem models we formulate a conceptual food
chain model. The aim of this model is to describe a general
food chain with as few parameters as possible. General,
easily interpretable parameters are preferred over specific
ones for which interpretation can be complicated. The main

advantage of the model is that its stability can be analysed
without having to specify the interaction functions in any way.
We are most interested in such bifurcations in which the initial
loss of steady state stability occurs.

We consider a food chain consisting of N active trophic
levels. Depending on the system under consideration a level
of the food chain may describe one species or a functional
group of similar species. Likewise, we use Xn to denote the
biomass density or the abundance in level n. The species on
level n are assumed to prey solely on species on the
immediately lower level n-1. Furthermore, we assume that the
biomass loss due to predation in level n-1 is proportional to Xn

whereas it is some function Gn-1 of Xn-1. Only a fraction 0n of
the biomass flow is converted to predator biomass. Taking
these factors into account we obtain a set of N ordinary
differential equations (ODEs)

dXn/dt=0nGn-1(Xn-1)Xn-Gn(Xn)Xn+1      n=1…N.

In these equations two additional variables X0 and XN+1

appear. The abundance of the nutrient X0 should be given in
terms of an algebraic equation, which we assume to depend
only on X1. By doing so we assume that the dynamics of the
nutrient is sufficiently fast. However, this restriction could be
easily lifted by setting X0=1 and considering X1 as the nutrient.

The variable XN+1 may be interpreted as the abundance of
a super predator. In reality the super predator may be an
actual predator of even higher trophic level. Likewise, it may
be used to describe any other cause of biomass loss in the
top predator population, like natural mortality, disease or
cannibalism. We do not model the super predator dynamics
explicitly but assume that it inflicts a linear mortality (linear
closure) on the top predator

GN(XN)XN+1 �XN.

Our model contains N interaction functions G0 … GN-1. We will
not restrict these functions to any specific functional form, but
demand that they are smooth and positive for positive Xn. In
this case the model has at least one positive steady state
X1*,…, XN*. We define the normalized abundances by

xn:=Xn/Xn*       n=1…N.

Furthermore we define normalized interaction functions

gn(xn):=Gn(Xn)/Gn(Xn*)=Gn(Xn*xn)/Gn(Xn*)}       n=0…N-1.

After normalization we end up with a general food chain
model in the form

dxn/dt="n(gn-1(xn-1)xn-gn(xn)xn+1)    n=1…N,

where the parameters " depend on the interaction functions in
the steady state. The sensitivity of the predator with respect to
the abundance of prey is described by

(n:= ∂gn(xn)/∂xn | x=x*,

whereas the sensitivity of the lowest trophic level with respect
to nutrient supply is given by

h:=-(∂x0/∂x1)(∂g0(x0)/∂x0)g0(x0) | x=x*.

In order to compare food chains of different length it is
desirable to make the number of parameters independent of
the length of the food chain. We achieve this by making two
more assumptions. First, an alometric slowing-down is
observed in most food chains. That is, the dynamics on every
level of the food chain is r times as fast as the dynamics on
the immediately lower level. We model this quite universal
behaviour by assuming

"n=rn-1     n=1...N, with 0 < r ����
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In the given normalization interactions between similar
species should produce similar values of (n. Therefore the
values of (1 … (N-1 may be assumed to be identical. We
define

':=(1 = … = (N-1

Using these definitions general food chains of arbitrary length
can be studied in terms of the parameters r, h and '.

Of our assumptions about the values of (1…(N-1 is clearly
the strongest one. However, this assumption is only needed
to avoid having too many parameters, which would make
presentation of the results difficult. Our conclusions will not
depend strongly on the assumption. In the general case we
would have different (1 … (N-1. The analysis outlined below
can be applied to each of these individually.

Bifurcations of general food chains

This general model is well suited to analyse the primary loss
of stability of the steady state. The point in which this loss of
stability occurs (and the system's natural mode of existence
breaks down) will in general be a Hopf bifurcation.

We have studied the bifurcation structure of two-, three-
and up to six-level food chains. The results are presented in
bifurcation diagrams in the three-dimensional parameter
space spanned by the parameters r, h and '. Every point in
the three dimensional space of the diagram corresponds to a
food chain with specific parameter values. Most of these food
chains exhibit qualitatively similar dynamics, whereas food
chains with qualitatively different dynamics are separated by
bifurcations.

Fig. 1. Bifurcation diagram of the di-trophic food chain with linear
closure. The Hopf bifurcation (grey surface) divides volumes of
different dynamics. The steady state is stable above the surface.

In case of the di-trophic food chain (Fig. 1) there is only one
bifurcation affecting the stability of the steady state. This is a
Hopf bifurcation which is shown in the diagram as a grey
surface. The bifurcation surface divides the parameter space
into two volumes. All parameter combinations found in the top
volume correspond to food chains in which the normalized
steady state is stable. If we move through the diagram by
varying parameter values, the steady state will remain stable
until the Hopf bifurcation surface is crossed. It will then
become unstable and will remain so in the entire lower
volume. Since the stability of the steady state is lost, the
system will now approach some other attractor. This new
attractor will probably be a limit cycle. However the exact
nature and the bifurcations of this attractor cannot be deter-
mined with the chosen degree of generality.

The bifurcation diagrams of a food chain of length four is
shown in Fig. 2. This diagram contains even more bifurcation
surfaces. In fact, the number of Hopf bifurcations equals the
food chain length divided by two (rounded down).  A transcriti-

Fig. 2. Bifurcation diagram of the four-trophic food chain. The steady state
stability is lost by crossing one of the two Hopf bifurcation surfaces.

cal bifurcation is additionally present in all food chains of odd
length. Like in the case of shorter food chains, the normalized
steady state is only stable above all surfaces. In any case the
steady state can be stabilised by making the predators
sufficiently sensitive to prey density (high '). Likewise, high
values of h (which will usually occur in oligotrophic systems)
have a stabilizing effect.

However, unlike ' setting h=1 is not always sufficient to
stabilise the steady state. The stabilising effect of h is more
pronounced if r is small, i. e. if separation of predator and prey
timescales is large. Generally, similar timescales (r §���� OHDG
to instability.

Functional forms of interaction functions

The investigation of specific models has revealed that there
are some features which almost all models share. For
instance, it was first realized by ROSENZWEIG (1971) that
increasing supply of nutrients or prey tends to destabilize
simple food chains models. This “Paradox of Enrichment” is
widely believed to occur in simple models independently of
the exact shape of the interaction function. However, in nature
the Paradox of Enrichment has rarely been verified (MORIN &
LAWLER, 1995). The destabilizing effect of enrichment has
been observed in some experiments (LUCKINBILL, 1974;
TILMAN & WEDIN, 1991). However, in other experiments
enrichment had no effect (CAULEY & MURDOCH, 1990), or even
stabilised food chain dynamics (KIRK, 1998).

In the previous section we have shown that high ' is
always beneficial. This is reasonable since high ' indicates
that the predators are very sensitive to the abundance of their
prey. The stabilizing effect of increased sensitivity to prey
density is very general and can be expected to be found in
almost all ecosystems. For instance, SAUNDERS & BAZIN

(1974) derived a condition that guarantees stability of a
steady state in a simple chemostat model. This condition may
be written as '>1. It is therefore reasonable to use ' to
measure the interactive stability, i. e. the stability of the
predator-prey interaction induced by the predator's sensitivity
to prey density. We have studied the dependence of ' for
different interaction functions and present here the results for
the well-known Holling type II function and another function
which looks similar in shape (see Fig. 3) but exhibits different
stability properties. Whereas ' is decreasing for increasing P
(P:=X*/K with K half saturation constant), the second
interaction function shows much more complex behaviour. For
Holling type II functions we obtain the result that enrichment
has always a destabilizing effect on the food chain. However,
although the interaction functions G(X) are similar in shape
the stability functions '(P) differ dramatically. For our newly
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proposed interaction function we find a large interval in which
'(P) increases with increasing P. In this interval enrichment
has a stabilizing effect.

Fig. 3. A proposed interaction function (solid line) in comparison with
the Holling type II function (dashed line). It is hard to decide which
function is better suited to describe predator-prey interaction in any
given system.

In general we find that all commonly used interaction func-
tions behave in a similar way. The stability of equilibria de-
creases monotonously as prey density is increased. However,
our general food chain model shows that the Paradox of
Enrichment will not occur in any food chain model. Although
we find a Paradox of Enrichment for all commonly used
interaction functions, but even minor modifications in the
functional form may introduce new types of behaviour. In
general, it is true that very low  prey concentrations will to
some extend have a stabilising effect while very high prey
concentrations may be destabilising. In the intermediate
region we may have intervals in  which enrichment  is
stabilising as well as intervals in which enrichment is
destabilising.  Here, the actual behaviour  depends strongly
on the exact form of the interaction function.

Complex ecosystem models are used to make prediction
on the future behaviour of natural systems. Since stability is
crucial for the survival of an ecosystem, realistic ecosystem
models should be built to mimic the stability properties of the
natural systems as closely as possible. Therefore, the most
realistic functions should be used. In order to find these
functions attempts should be made to measure interaction
functions in experiments.

Fig. 4. Comparison of the stability functions corresponding to the
proposed interaction function (solid line) and Holling type II (dashed
line). The plot reveals the qualitative differences of the stability
functions.

Diffusion-Induced pattern formation in a minimal
sediment model

The degradation of chemical substances in sediment is
proceeded by a complex network of interacting populations of

microorganisms (VANCAPPELLEN & WANG, 1996; HUNTER et al.,
1997). To study the emergence of spatial patterns in the
sediment, we restrict ourselves to one bacteria population and
analyse a part of the relevant processes. In particular we
focus on the interaction between degradation and transport
processes in a model, we refer to as the minimal sediment
model or MS-model.

Fig. 5. Instead of the complex network of  bio-geo-chemical
interactions, we consider a minimal sediment model.

Pattern formation phenomena in reaction-diffusion systems of
similar kind to that used for the MS-model have been a central
issue to modellers since the fundamental paper of TURING

(1952). He showed, that due to the effects of diffusion
homogeneous distributions in chemical systems can loose
their stability with respect to perturbations. This phenomenon,
referred to as Turing-instability, was proven to be significant
for certain chemical reactions, which were considered as
important examples for a group of systems showing complex
dynamics (NICOLIS & PRIGOGINE, 1977; NICOLIS, 1995). In the
last years also other processes were analysed with regard to
their influence on pattern formation: In particular, the research
focuses on advection (ROVINSKY et al., 1994; KUZNETSOV et al.,
1997; SATNOIANU et al., 1998; SATNOIANU et al., 2001) and
non-normal diffusion (HENRY & WEARNE, 2002).

In ecological sciences it was found that pattern formation
phenomena can be observed in predator-prey systems, which
are interacting with transport processes. Several models show
Turing instabilities (MURRAY, 1993; KUANG & BERETTA, 1998;
ALONSO et al., 2002) or other complex dynamics, which
destabilises homogeneous distributions (KLAUSMEIER, 1999).

Since profiles of chemicals and/or microorganisms found
in natural systems can also show complex structures (MUDRYK

et al., 2000), we present the MS-model as a very simple
system, which shows pattern formation phenomena.

The minimal sediment model

Fig. 6. In the minimal sediment model we consider spatial and local processes.

We employ the MS-model on a vertical one-dimensional
domain considering the processes shown in Fig. 6. Thus, the
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temporal changes of the population of microorganisms and its
nutrient are governed by the partial differential equations:

The (dimensionless) balance equations for the variables X
(bacteria) and Y (nutrient) consist of the contributions
stemming from different processes: Degradation, bio-
turbation, loss of bacteria and diffusion. We use the
dimensionless parameters: m = 

�
mortality

�
 rate of bacteria, K =

half saturation constant, Y0 = concentration of nutrient in the
seawater, DX and DY = diffusion coefficients of X and Y,
respectively. The space coordinate is z, time is denoted by t.

Additional to the equations boundary conditions have to be
specified. We generally employ no-flux conditions at the
boundaries, except at the upper one, at which we allow for a
flux of nutrient into the system.

The dynamics of the local model

In a first step we study the dynamical properties of the local
model. To this end we neglect the effects of diffusion and set
a=0 in the bioturbation term, so that it is independent of the
spatial variable z. Since the local model is proposed to be
valid in some inner point of the domain, boundary conditions
are neglected.

The dynamics of the spatial model

The spatial model is given by the complete equations. To
study the system we firstly consider a simple case, in which
the bioturbation is spatially constant and diffusion fluxes
occur. Also, boundary fluxes shall be neglected. This case is
very similar to the local one and (if we restrain to continuous
profiles) we will obtain analogous equilibrium states: Constant
profiles taking the values of E0, E1 or E2 over the entire
domain are the only (continuous) steady states. The result,
that E0 is always and E2 is under certain presumptions an
attracting state, can be expanded to this spatial case.

Fig. 7a. Location of equilibria [solid lines = attractors, dashed lines =
repellors and saddle nodes]; diagram of type 1: E2 is always an
attractor.

We find, that there always exist a trivial equilibrium state E0 =
(0,Y0) at which the bacteria are extinct. Depending on the
parametrisation, this steady state can be accompanied by a
pair of non-trivial equilibria E1=(X1,Y1) and E2=(X2,Y2) with

0<X1<X2 and Y2 <Y1<Y2. E1 is always a saddle, whereas E2 is
either an attractor or a repellor. In the latter case, the stability
characteristics of E2 can be changed by parameter variation:
A sufficiently high increase of Y0, for instance, will have the
result that E2 will turn into an attractor. When changing its
characteristics, E2 traverses a subcritical Hopf bifurcation and
an unstable periodic orbit emerges (see Figs. 7a and b).

Fig. 7b. Location of equilibria [solid lines = attractors, dashed lines =
repellors and saddles, dotted line = periodic points]; diagram of type
2: E2 changes from repellor to attractor, an unstable orbit of periodical
points emerges.

Surprisingly, the latter is not necessarily true, if effects of
diffusion come into play. In Fig. 8 we plotted the temporal
behaviour of a spatial model, in which we included diffusion
and took into account, that the effect of bioturbation is
decreasing with increasing depth. The first time steps show a
diffusion-free profile, corresponding to the E2-equilibrium (due
to the non-constant bioturbation the values change slightly
with depth). At time step 4 we added a very small
perturbation. We observe that the perturbed profile does not
return to the monotonous state, but forms a spatially
oscillating pattern, instead.

The time series in Fig. 8 shows a cosinoid oscillation with
wavenumber 3/2 in the long run. We typically obtain such
patterns in the MS-model (cosinoid distributions with small
wavenumbers), but also other time series occurred, showing
stable profiles, in which one or more cosinus periods are
extinct and a constant zero-profile appears (on this spatial
interval), instead.

Fig. 8. Profiles of the MS-model in a time series. The diffusion-free
profile looses stability, when a perturbation is added (see arrow at
time step).

To summarise the appearance of different spatial equilibrium
states, we show their locations (at a certain depth - we chose
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the first discretisation box) in a bifurcation diagram. Figs. 9a
and b show two different bifurcation diagrams: One for a case
with constant bioturbation (Fig. 9a), another one for a
decreasing bioturbation term (Fig. 9b). In both cases all
boundary fluxes are neglected (if nutrient flows into the
system from the top, the bifurcation diagram is similar to that
of Fig. 9b).

Both diagrams show that at values of Dy compared to Dx
the diffusion-free profile is the only non-trivial equilibrium.
When this profile passes a bifurcation (characterised by
wavenumber n), it becomes sensitive to oscillating
perturbations of this wavenumber. Consequently, the
diffusion-free distribution loses stability, when passing the first
bifurcation. So a natural system, which would have similar
behaviour as the MS-model (at these parameter ranges), will
never produce a diffusion-free profile, since natural systems
are always affected by noise.

Numerical experiments showed that instead of the
diffusion-free distribution spatially oscillating patterns become
attracting (compare Fig. 8). For certain parameter sets we
found that it is possible that there is a coexistence of several
attracting equilibria, characterised by oscillating patterns (e. g.
3/2+ and 2+ states). In this case it depends on the form of the
added perturbation then, to which pattern the system will
converge to.

We could show that applying a non-constant bioturbation
(or a boundary-flux of nutrient), the bifurcations split up (see
Fig. 9b). In this case the diffusion-free profile loses stability
when passing through the first turning point, and we can
observe attracting equilibria again, which show almost the
same oscillating structures as those found for case 1.

Fig. 9a. Bifurcation diagram (case 1: constant influence of
bioturbation). Squares symbolise bifurcations. The branches are
labelled due to the wavenumbers of the main mode of their profiles.

.
Fig. 9b. Bifurcation diagram (case 2: decreasing influence of
bioturbation). Due to symmetry breaking the bifurcation points split
up.

By analysing the MS-model, we found that, neglecting
diffusion-terms, diffusion-free profiles are the only non-trivial
equilibria. When diffusion comes into play, this property can
change under certain conditions: In that cases the diffusion-
free profile loses its stability and due to a diffusion instability
spatial oscillating patterns become attracting instead.

The preconditions for such phenomena of pattern
formation can be summarised as follows:

(1)The diffusion of nutrient is high in comparison to that of
bacteria. Considering the different sizes of bacteria and
nutrients and taking into account that bacteria tend to stick
to the sediment matrix, this condition is reasonable.

(2)The growth of bacteria is autocatalytic. This special feature
follows from the activation mechanism in the MS-model.

(3)The input of nutrient into the system is high in comparison
to the loss of bacteria. This condition relates to the general
finding that pattern formation only appears in open
systems and requires an input of energy.

Under such conditions the emergence of inhomogeneous
spatial patterns takes place without any external forcing.
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REDUCTION OF A COMPLEX BIOGEOCHEMICAL
MODEL WITH NEURAL NETWORK AND

CLUSTERING TECHNIQUES

K. Bernhardt, T. A. Sperr & K. W. Wirtz

Introduction

In the context of global change, mathematical models of
biogeochemical cycles can support the understanding of
complex processes controlling the emission of greenhouse
gases. In this work a special focus is laid on nitrous oxide,
estimated to contribute to global warming to an amount of
about 6% (IPCC, 2001).Even though N2O outflux from coastal
and shelf sediments is found to be about one third of the total
global emissions (SEITZINGER & KROEZE, 1998), the formation
of N2O is often not incorporated in standard model
approaches (e. g. WANG & VAN CAPPELLEN, 1996, SOETAERT et
al., 1996; HUNTER et al., 1998; RINN et al., 1999). In part, this
gap derives from the scarcity of available datasets preventing
an adequate parameterisation of process-oriented modelling
frames.

In this study we nonetheless adopt a newly built integrated
and mechanistic modelling framework as proposed by (WIRTZ,
2003). Albeit using a relatively large data-set for validation,
many process parameters of this model cannot be directly
evaluated. The model furthermore requires a set of boundary
conditions which characterize a local site and are therefore
hardly applicable on a global scale. Both characteristics lead
to two key problems in environmental modelling:
1. Can meaningful predictions be made at large model

uncertainty?
2. Does a complex and intrinsically uncertain model allow for

being up-scaled to larger scales?

In this study we present an approach which simultaneously
addresses the issue of up-scaling and model uncertainty
using data mining techniques such as neural network-based
techniques like the Self-Organizing Map (SOM) (KOHONEN,
2001).

One of our guiding hypothesis is that a reduced-form
representation can be proposed if the full account of the
uncertainty ranges of all model processes is known. The
existence of such a reduced representation is supported by

nonlinear data analysis where, for example, a neural network
trained with an empirical, high-dimensional dataset of
sediment biochemistry (KROPP & KLENKE, 1997) revealed a
limited number of distinct system states. We suggest that a
similar reducibility should be inherent to the high-dimensional
output of a complex biogeochemistry model.

Yet, such a behaviour has never been expressed in strict
quantitative terms. Whereas this can be addressed with the
SOM algorithm, the low dimensional state maps representing
a well trained SOM often do not allow direct interpretation. A
further clustering of the SOM results as suggested by
VESANTO & ALHONIEMI (2000) improve this aspect, but it does
not provide a suitable verbal, graphical or quantitative
representation. Thus, the discussion of key mechanisms
ruling the system behaviour as well as the coupling to a larger
scale modelling frame require further transformation of
clustering results for which we suggest the form of a simple
transition graph.

Model description

The biogeochemical model used in this work is also described
by Wirtz (this volume). It builds upon a synthesis of standard
approaches such as those of HUNTER (1998), WANG & VAN

CAPPELLEN (1996) and SOETAERT et al. (1996), extended into
various directions.

Four arrays of biogeochemical reactions are accounted
for: degradation of several classes of particulate organic
carbon (POC), oxidation of dissolved organic carbon (DOC)
organised in different groups of higher and lower molecular
weight, re-oxidation of reduced substances and mineral
precipitation. Major chemical products are CO2, mineralised
nutrients and methane.

Many improvements were made particularly to enhance
the applicability of the model to near-shore sediments
characterised by temporally and spatially variable conditions.
Besides an overall temperature dependence these are the
microbial control of nearly the entire kinetics, the adaptation
and competition processes of microorganisms and an array of
additional transport mechanisms for chemical or biological
species either in the dissolved or particulate phase.

The transport part combines, e. g., non-local exchange
between the water column and deeper sediment, trapping of
particulate species in the upper sediment matrix or the
adhesion behaviour of bacteria. To keep computational loads
low, we used a one-dimensional setup in our analysis. N2O
formation is calculated on the basis of a detailed module for
the cycling of different nitrogen species.

Data generation under uncertainty

The variation of model-parameter values in physically mea-
ningful ranges constitutes a simple but effective means to
reflect parameter uncertainty. Until now, the data amount
produced by parameter variations has mainly been used to
assess model sensitivities which, in turn, may improve the
understanding of the simulated system in general or prepare
subsequent stages of model reduction in  future studies
(KÖHLER & WIRTZ, 2002; WIRTZ, 2001).

In this study, parameter variations do not only reflect
underlying uncertainties but also enable the generation of an
arbitrary large dataset needed by the following stages of
nonlinear analysis. Since we simultaneously varied 62
parameters, a Monte-Carlo algorithm based on two different
distribution functions was used. If minimal and maximal range
values differed by more than one order of magnitude, a log-
normal distribution was applied, whereas random parameter
values for smaller ranges were distributed equally.

To compromise between the availability of computer
power and the demand resulting from a high-dimensional
parameter space, 1000 variations were performed. The varied
parameters can be categorized by the following basic groups:


