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CLUSTERING TECHNIQUES
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Introduction

In the context of global change, mathematical models of
biogeochemical cycles can support the understanding of
complex processes controlling the emission of greenhouse
gases. In this work a special focus is laid on nitrous oxide,
estimated to contribute to global warming to an amount of
about 6% (IPCC, 2001).Even though N2O outflux from coastal
and shelf sediments is found to be about one third of the total
global emissions (SEITZINGER & KROEZE, 1998), the formation
of N2O is often not incorporated in standard model
approaches (e. g. WANG & VAN CAPPELLEN, 1996, SOETAERT et
al., 1996; HUNTER et al., 1998; RINN et al., 1999). In part, this
gap derives from the scarcity of available datasets preventing
an adequate parameterisation of process-oriented modelling
frames.

In this study we nonetheless adopt a newly built integrated
and mechanistic modelling framework as proposed by (WIRTZ,
2003). Albeit using a relatively large data-set for validation,
many process parameters of this model cannot be directly
evaluated. The model furthermore requires a set of boundary
conditions which characterize a local site and are therefore
hardly applicable on a global scale. Both characteristics lead
to two key problems in environmental modelling:
1. Can meaningful predictions be made at large model

uncertainty?
2. Does a complex and intrinsically uncertain model allow for

being up-scaled to larger scales?

In this study we present an approach which simultaneously
addresses the issue of up-scaling and model uncertainty
using data mining techniques such as neural network-based
techniques like the Self-Organizing Map (SOM) (KOHONEN,
2001).

One of our guiding hypothesis is that a reduced-form
representation can be proposed if the full account of the
uncertainty ranges of all model processes is known. The
existence of such a reduced representation is supported by

nonlinear data analysis where, for example, a neural network
trained with an empirical, high-dimensional dataset of
sediment biochemistry (KROPP & KLENKE, 1997) revealed a
limited number of distinct system states. We suggest that a
similar reducibility should be inherent to the high-dimensional
output of a complex biogeochemistry model.

Yet, such a behaviour has never been expressed in strict
quantitative terms. Whereas this can be addressed with the
SOM algorithm, the low dimensional state maps representing
a well trained SOM often do not allow direct interpretation. A
further clustering of the SOM results as suggested by
VESANTO & ALHONIEMI (2000) improve this aspect, but it does
not provide a suitable verbal, graphical or quantitative
representation. Thus, the discussion of key mechanisms
ruling the system behaviour as well as the coupling to a larger
scale modelling frame require further transformation of
clustering results for which we suggest the form of a simple
transition graph.

Model description

The biogeochemical model used in this work is also described
by Wirtz (this volume). It builds upon a synthesis of standard
approaches such as those of HUNTER (1998), WANG & VAN

CAPPELLEN (1996) and SOETAERT et al. (1996), extended into
various directions.

Four arrays of biogeochemical reactions are accounted
for: degradation of several classes of particulate organic
carbon (POC), oxidation of dissolved organic carbon (DOC)
organised in different groups of higher and lower molecular
weight, re-oxidation of reduced substances and mineral
precipitation. Major chemical products are CO2, mineralised
nutrients and methane.

Many improvements were made particularly to enhance
the applicability of the model to near-shore sediments
characterised by temporally and spatially variable conditions.
Besides an overall temperature dependence these are the
microbial control of nearly the entire kinetics, the adaptation
and competition processes of microorganisms and an array of
additional transport mechanisms for chemical or biological
species either in the dissolved or particulate phase.

The transport part combines, e. g., non-local exchange
between the water column and deeper sediment, trapping of
particulate species in the upper sediment matrix or the
adhesion behaviour of bacteria. To keep computational loads
low, we used a one-dimensional setup in our analysis. N2O
formation is calculated on the basis of a detailed module for
the cycling of different nitrogen species.

Data generation under uncertainty

The variation of model-parameter values in physically mea-
ningful ranges constitutes a simple but effective means to
reflect parameter uncertainty. Until now, the data amount
produced by parameter variations has mainly been used to
assess model sensitivities which, in turn, may improve the
understanding of the simulated system in general or prepare
subsequent stages of model reduction in  future studies
(KÖHLER & WIRTZ, 2002; WIRTZ, 2001).

In this study, parameter variations do not only reflect
underlying uncertainties but also enable the generation of an
arbitrary large dataset needed by the following stages of
nonlinear analysis. Since we simultaneously varied 62
parameters, a Monte-Carlo algorithm based on two different
distribution functions was used. If minimal and maximal range
values differed by more than one order of magnitude, a log-
normal distribution was applied, whereas random parameter
values for smaller ranges were distributed equally.

To compromise between the availability of computer
power and the demand resulting from a high-dimensional
parameter space, 1000 variations were performed. The varied
parameters can be categorized by the following basic groups:
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1) Temperature dependence,
2) rate and half-saturation of microbial kinetics for all path-

ways,
3) formation rates of inorganic precipitates,
4) bacterial growth parameters,
5) physical properties of the sediment,
6) bacterial parameters concerning nitrous oxide formation

and
7) a selection of ambient seawater concentrations like those

of O2 or reducible iron.
For each parameter variation we employ the same driving
forces, i. e. a set of time series (temperature, nitrate, ammo-

nium and POC) measured in the Spiekeroog backbarrier tidal
flat system.

To sum up, we generate realisations of an annual cycle
with fixed outer conditions and different inner parame-
terisation. Besides the lack of quantitative data for process
parameters, these different realisations represent spatial and
organismic heterogeneity (WIRTZ, 2001).

The system state was characterized by 12 aggregated
variables, which were calculated using the model variables.
We used five summed quantities to capture the microbial
activity and the chemical state and three flux variables of
nitrogen components as these are of special interest
concerning nitrous oxide dynamics. In addition, we included
the daily value of all four boundary time series. The complete
list of aggregated state variables can be found in Table 1.

The Self-Organizing Map algorithm

The SOM-algorithm (KOHONEN, 2001) provides the mapping of
a multidimensional data set onto a set of topologically ordered
so-called prototype vectors. These vectors wi are arranged in
a regular hexagonal grid, resembling neighbourhood relations
between adjacent nodes. The prototype vectors are iteratively
updated according to the Euclidean distance between the
training data and the nearest prototype according to this
norm. The update procedure of prototype wi(t+1) is then
calculated as
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with learning rate factor αi(t) and input vector X(t). The
neighborhood relation of αi(t) takes a Gaussian form:
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with ri denoting spatial coordinates and w1(t) being the best
matching prototype at time t.

Before training each component of the data was
normalised by mean and standard deviation. We used a two-
dimensional map of 28 x 42 nodes and an initial
neighbourhood parameter of σ = 21 decreasing linearly to 1,
preventing the distortion of the ordered map by subsequent
fine-tuning steps. The map was initialised using the first two
principial components of the data to shorten the training
process.

Clustering and construction of the state-transition network

The prototype vectors of the trained SOM were clustered with
the k-means clustering algorithm (MACQUEEN, 1967; VESANTO

& ALHONIEMI, 2000) for cluster numbers ranging from 2 to 100.
The Davies-Bouldin Index (DBI) (DAVIES & BOULDIN, 1979) is
used in this work to measure cluster quality.

Any of the 1000 times 365 simulation days calculated
during the variation corresponds to a defined cluster providing
a distribution of transitions between prototypes or clusters,
respectively. To evaluate the first-order dynamics between
aggregated states defined by clusters we determined simple
means of transition-probabilities.

Principal component analysis

Parallel to the combined SOM-clustering method a principal
component analysis on the variation data was also performed.
It revealed that the first seven Eigenvectors of the covariance
matrix are needed to explain 90 percent of the variance. Thus,
it may not be possible to reduce the data to a small linear
subspace.

Results and discussion

The result of the principal component analysis demonstrates
the necessity of a nonlinear method for data analysis.
Components for each reference vector of the trained map are
shown in Fig. 1, using a grayscale coding. Beside a global
ordering, e. g. into a northern summer and a southern winter
part (see variable pelTemp), local structures emerge,
indicating around 20 to 100 homogeneous regions/clusters. In
the context of this work the south-eastern corner of the map
showing high negative values of N20 flux (FN2O) is of special
interest.

An integral but at the same time much more puzzled
picture emerges after superposing the 12 individual
component planes. Local patches with similar contribution of
each component could be robustly extracted by the simple

Table 1. Aggregated state variables of the sediment model.

Symbol Comment

TfCO2 Total CO2 production - Sum over all main reactions and all boxes
TOC Total organic carbon (DOC + POC) - Sum over all boxes
TO2 Total oxygen – Sum over all boxes
TNO3 Total nitrate – Sum over all boxes
TRM Total reduced matter – H2S, Mn(II), Fe(II), FeS, MnS and pyrite. Sum over all boxes

FNO3 Flux of nitrate – Water to 
�

sediment.
FNH4 Flux of ammonium – Water to 

�
sediment.

FN2O Flux of nitrous oxide – Water to sediment.

pelPOC Pelagic particulate organic carbon - Annual cycle measured 1995
pelTemp Pelagic temperature – Annual cycle measured 1995
pelNO3 Pelagic nitrate - Annual cycle measured 1995
pelNH4 Pelagic ammonium - Annual cycle measured 1995
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clustering algorithm used. Calculations of the DBI (not shown)
yielded a local minimum at 49 clusters in accordance with the
impression obtained by looking at the maps.

The set of clusters obtained (see Fig. 2) is considered to
represent typical states the system is able to reach. Temporal
dynamics can be re-inserted by mapping each day of the
input data onto the nearest cluster of the network and by
determining empirical transition-probabilities between the
clusters.

Fig. 3 shows an example for the clusters characterized by
high N2O emissions (compare with Figs. 1 and 2 for cluster
numbering). This transition graph indicates that only 8 input
clusters show relevant probabilities to reach one of the 5
clusters with high N2O efflux and a feedback into a subset of
these input states.

Fig. 2. The trained 28 x 42 SOM with 49 clusters. A cluster can be
interpreted as an effectively aggregated state of the simulated
biogeochemical system.

Drawbacks of SOM and future work

Considering the modelling aims presented in the previous
sections, some theoretical as well as technical limitations of
Self-Organizing Maps must be outlined (BARALDI & BLONDA,
1999):
• SOM does not preserve topology of the underlying data if

the dimension of the input space is larger than three (the
maximum dimension of the SOM network for
visualisation).

• Prototype parameter estimates may be severely affected
by noise points and outliers, as learning rates in SOM are
independent of the actual distance between the input
pattern and its nearest template vector.

Especially the lack of topology-preservation of higher-
dimensional input spaces can result in a poor representation
of the data. This discrepancy is further amplified by the impact
of outliers and noise on the general structure of SOM.

A possible alternative to SOM designed to overcome this
kind of problems is FOSART (fully self-organizing simplified
adaptive resonance theory; BARALDI & BLONDA, 1999; BARALDI

& ALPAYDIN, 2002). FOSART generates prototype vectors
directly from the data and is able to dynamically create and
remove links between these templates. It therefore accounts
for the inherent complexity of the data and is an example for
topology-preserving mappings.

Thus, a first step of further studies should be the analysis
of the effective dimensionality of the data and the
implementation of adequate methodologies to preserve its
topology. Further improvements concerning, e. g., the fitness
functions used to quantify the state of organization of the map
(BAUER et al., 1999; POLANI, 1997) or the goodness of
clustering (VESANTO & ALHONIEMI, 2000; ROTH et al., 2002)
should be made. In this way, a stable algorithm should be
found which can be used to help the user/modeller to reduce
complicated process-based models. Potential applications of
such a generic modelling tool range from more theoretical
investigations of system stability as envisaged by FEUDEL et
al. (this volume) to the practical use of model-based
knowledge for decision support (WIRTZ, 2001).

Up to a certain degree it is possible to inversely map each
cluster to approximate values of typical monitoring
observables or of standard model variables. After doing so,
the  transition matrix obtained in this study could, e. g., be
implemented as a lookup-model usable in global change
assessments.

Nevertheless, the major challenge of the presented
transformation approach remains its complete reformulation in
terms of measurable variables. In order to link the highly
abstracted transition graph to empirical research a more
intense assimilation as well as common interpretation of field
data is needed.

Fig. 1. SOM component planes for reference vectors (see Table 1). Each grid point represents a member of the trained
map. Relative importance of the specific component is visualised by shading intensity.
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Fig. 3. Transition graph for clusters indicating high N2O emissions. On the left side, typical predecessor states of high N2O events are
collected, on the right side are the successors. Transition probabilities are attached as small numbers.


